Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants.
نویسندگان
چکیده
Many oxidized pollutants, such as nitrate, perchlorate, bromate, and chlorinated solvents, can be microbially reduced to less toxic or less soluble forms. For drinking water treatment, an electron donor must be added. Hydrogen is an ideal electron donor, as it is non-toxic, inexpensive, and sparsely soluble. We tested a hydrogen-based, hollow-fiber membrane biofilm reactor (MBfR) for reduction of perchlorate, bromate, chlorate, chlorite, chromate, selenate, selenite, and dichloromethane. The influent included 5 mg/L nitrate or 8 mg/L oxygen as a primary electron accepting substrate, plus 1 mg/L of the contaminant. The mixed-culture reactor was operated at a pH of 7 and with a 25 minute hydraulic detention time. High recirculation rates provided completely mixed conditions. The objective was to screen for the reduction of each contaminant. The tests were short-term, without allowing time for the reactor to adapt to the contaminants. Nitrate and oxygen were reduced by over 99 percent for all tests. Removals for the contaminants ranged from a minimum of 29% for chlorate to over 95% for bromate. Results show that the tested contaminants can be removed as secondary substrates in an MBfR, and that the MBfR may be suitable for treating these and other oxidized contaminants in drinking water.
منابع مشابه
Reduction of Perchlorate and Other Micropollutants in a Hydrogen- Based, Hollow-Fiber Membrane Biofilm Reactor
The membrane biofilm reactor (MBfR) a novel bioreactor that provides gaseous substrates directly to a biofilm growing on the membrane surface, avoiding the need for sparging. MBfRs are not membrane bioreactors (MBRs), where membranes separate suspended solids from the effluent water, substituting for a clarifier. In MBfRs, a gaseous substrate moves across the membrane. Since the MBfR membranes ...
متن کاملNew Polymer Catalytic Membranes for Nitrite Reduction: Experimental Assessment
In this work we report the experimental assessment of the performance of a new catalytic hollow fiber reactor with supported Pd catalyst for nitrite removal from polluted waters. The reactor configuration facilitates working at low flowrate and hydrogen concentrations in order to improve the selectivity of the reduction reaction towards nitrogen, thus, inhibiting the formation of ammonia. Pd ca...
متن کاملMultidimensional modeling of biofilm development and fluid dynamics in a hydrogen-based, membrane biofilm reactor (MBfR).
A two-dimensional, particle-based biofilm model coupled with mass transport and computational fluid dynamics was developed to simulate autotrophic denitrification in a spiral-wound membrane biofilm reactor (MBfR), where hydrogen is supplied via hollow-fiber membrane fabric. The spiral-wound configuration consists of alternating layers of plastic spacer net and membrane fabric that create rows o...
متن کاملTotal Nitrogen Removal in a Completely Mixed Membrane Biofilm Reactor for Nitrification and Denitrification
A Hollow-fiber Membrane Biofilm Reactor (MBfR) was used to nitrify and denitrify synthetic wastewater to remove nitrogenous pollutants such as ammonium, nitrate, and nitrite. Aerobic and anoxic MBfRs were combined to oxidize and reduce these nitrogenous pollutions using biofilms as the catalyst for these chemical reactions. The MBfR is capable of converting ammonium (NH4) to nitrogen gas (N2), ...
متن کاملPossibility of the Use of Hollow Fiber Membrane Contactors for Phenol Biodegradation in Saline Solutions
A microporous polypropylene (PP) hollow fiber membrane contactor was used as a reactor to biodegrade phenol in high-salinity solutions by Pseudomonas putida CCRC14365 at 30C. Suspended cells grew only at a NaCl concentration below 2.5 wt%. On the other hand, cells within hollow fibers completely degraded 0.5 g/L of phenol in solution containing NaCl up to 8.6 wt%, likely due to the fact that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water science and technology : a journal of the International Association on Water Pollution Research
دوره 49 11-12 شماره
صفحات -
تاریخ انتشار 2004